Temposonics R-Series Sensor Models RP/RH

Operating Instructions

Analog Measurement System

Temposonics are linear position sensors. Measurement values are absolute and available without error immediately without reference measurement even after power recovery. Position measurement is contactless via a position magnet which does not need to be energized. The wear-free sensor function combines high operating safety and a long service life.
This Temposonics sensor with built-in analog output is connected to the controller without an additional evaluating unit. Position and velocity can be measured. Operations with one or two magnets are possible.

(ϵ

ISO 9001

CERTIFIED
MTS Sensor Technologie
GmbH \& Co.KG
Auf dem Schüffel 9
D-58513 Lüdenscheid, Germany
Tel. +49-2351-9587-0
Fax + 49-2351-56491
Email: info@mtssensor.de
www.mtssensor.de

Preface

The general safety instructions given below are intended to ensure the personnel safety and to avoid damage. Temposonics are state-of-the-art position measurement systems built in accordance with the standard safety regulations. Nevertheless, hazards to the life and health of the user or other persons, or impairments of the sensor or other objects may arise in conjunction with the use of Temposonics Sensors.

Application

1. The position measurement systems of all series Temposonics may be used only for the purposes for which they were designed, i.e. they may be used exclusively for measurement tasks in industrial, com- mercial and laboratory applications. E.g. positions, displacements and speeds can be measured (more detailed information is given in the relevant product documentation). The position sensors are accessories
of an installation and must be connected to a suitable evaluating unit as included in a PLC, IPC, indicator or other electronic control unit. Correct use for the intended purpose implies that all instructions given in the product documentation are followed. Using sensor Temposonics beyond these limits is incorrect. MTS Sensor Technologie GmbH \& Co. KG refuse any
liability for damage resulting from incorrect use.
2. The displacement sensors may be used only in safe condition. In order to maintain this condition and to ensure safe operation, installation, connection and service work may be done only by trained and quali-
fied personnel *), whereby the relevant instructions for accident prevention and safety as well as the information given in the product documentation must be followed.

Functional trouble

Hazards to the safety of persons or risks of damage to operating facilities due to sensor failure or malfunction must be avoided by additional safety measures such as plausibility checks, limit switches, emergency off systems, protective devices, etc.

In case of trouble, the sensor must be shut down and protected against accidental operation.

Repair

Repair of the sensor may be done only by MTS or an explicitly authorized organization.

Installation and operation

To ensure perfect functioning, following the information given below is indispensable:

1. Protect the sensors against mechanical damage during installation and operation.
2. Do not open or dismantle the sensors.
3. Connect the sensors with utmost care related to polarity of connections, supply voltage as well as type and duration of control pulses.
4. Use only approved power supplies.
5. Meeting the permissible sensor limit values e.g. for supply voltage, environmental conditions etc. specified in the product documentation is indispensable.
6. Check the correct function of the position sensors at regular intervals and provide test documentation.
7. Before switching on the installation, ensure that the starting machine does not threaten the safety and health of persons.

*) Trained personnel means persons who

- related to projecting, are familiar with the safety concepts of automation,
- are informed of the electromagnetic compatibility,
- have received a special training for commissioning and servicing,
- are familiar with the operation of the unit and informed of the specifications for correct operation given in the product documentation.

The following description is valid for all R-Series Temposonics position sensors with ANALOG Interfaces (Profile or Rod style) with measuring ranges of 25-7600 mm.
Their model number is shown on each sensor type label with following ordering code (see right).

Sample type label

Sensor Model
RP = Profile housing
RH = Hydraulic Rod with threaded flange
Style

1. Temposonics-RP (Profile)

S = Captive sliding magnet, joint at top
$\mathbf{V}=$ Captive sliding magnet, joint at front
$\mathbf{M}=$ Floating magnet, $\varnothing 33 \mathrm{~mm}$ (open ring)
2. Temposonics-RH (Rod)

M = Flange with metric thread M18 $\times 1,5$ (Standard)
$\mathbf{S}=$ Flange with english thread $3 / 4$ " -16 UNF -3 A
Measuring Range/Order Length
0050-5000 mm (Profile model)
$0050-7600 \mathrm{~mm}$ (Rod model)

Connection Type

D60 $=6$ pin DIN male receptacle
R02 $=2 \mathrm{~m}$ pigtailed PVC cable w/o connector (Option: 01-10 m)

Input Voltage

1 = +24 Vdc
Output
1-Magnet Sensor

1. Position

V01 = 0-10
$\mathrm{V} 11=10-0 \mathrm{~V}$
$\mathbf{A} 01=4-20 \mathrm{~mA}$
A11 $=20-4 \mathrm{~mA}$
A21 $=0-20 \mathrm{~mA}$
A31 $=20-0 \mathrm{~mA}$

2-Magnet Sensor
Position $1+2$
V02 $=0-10 \mathrm{~V}$
V12 $=10-0 \mathrm{~V}$
$\mathbf{A 0 2}=4-20 \mathrm{~mA}$
$\mathbf{A 1 2}=20-4 \mathrm{~mA}$
$\mathbf{A} 22=0-20 \mathrm{~mA}$
A32 $=20-0 \mathrm{~mA}$
2. Position + Velocity

V01 XXX,X = 0-10 V
V11 XXX, X = $10-0 \mathrm{~V}$
A01 XXX,X $=4-20 \mathrm{~mA}$
A11 XXX,X = 20-4 mA
A21 XXX,X $=0-20 \mathrm{~mA}$
A31 XXX,X = $20-0 \mathrm{~mA}$
Velocity (Vmax): 000,1-010,0 m/s
Sample:
$(5,5 \leftarrow 0 \rightarrow 5,5 \mathrm{~m} / \mathrm{s}=10 \leftarrow 0 \rightarrow 10 \mathrm{~V})=\mathrm{V} 010055$
$(1,0 \leftarrow 0 \rightarrow 1,0 \mathrm{~m} / \mathrm{s}=4 \leftarrow 12 \rightarrow 20 \mathrm{~mA})=\mathrm{A} 410010$
Velocity output for VO1 - A71 (see above)
Measuring direction: Revers - Null - Forward

| V01 $=$ | $10 \leftarrow 0 \rightarrow 10 \mathrm{~V}$ |
| :--- | :---: | :--- |
| V11 $=$ | $10 \leftarrow 0 \rightarrow 10 \mathrm{~V}$ |
| A01 $=$ | $20 \leftarrow 4 \rightarrow 20 \mathrm{~mA}$ |
| A11 $=$ | $20 \leftarrow 4 \rightarrow 20 \mathrm{~mA}$ |
| A21 $=$ | $20 \leftarrow 0 \rightarrow 20 \mathrm{~mA}$ |
| A31 $=$ | $20 \leftarrow 0 \rightarrow 20 \mathrm{~mA}$ |
| V41 $=$ | $0 \leftarrow 5 \rightarrow 10 \mathrm{~V}$ |
| V51 $=$ | $10 \leftarrow 5 \rightarrow 0 \mathrm{~V}$ |
| A41 $=$ | $4 \leftarrow 12 \rightarrow 20 \mathrm{~mA}$ |
| A51 $=$ | $20 \leftarrow 12 \rightarrow 4 \mathrm{~mA}$ |
| A61 $=$ | $0 \leftarrow 10 \rightarrow 20 \mathrm{~mA}$ |
| A71 $=$ | $20 \leftarrow 10 \rightarrow 0 \mathrm{~mA}$ |

Temposonics-RP / Measuring Range: 50-5000 mm

mm

*) $98 \mathrm{~mm}>3500 \mathrm{~mm}$ measuring range
(1) Captive sliding magnet »S«
2. Temposonics RP-V...
(2) Captive sliding magnet $» \mathrm{~V}$ «
(3) Ball jointed arm, M5 thread

3. Temposonics RP-M...

Floating magnet »M/ Part No. 251416

Part No. 252182

Temposonics-RH / Measuring Range: 50-7600 mm
Ringmagnet No. 201542 (Standard)

CAUTION!

With all sensors described in these operating instructions, the areas left and right of the stroke length are inactive (mounting area, damping) and should not be used for measurement. Nevertheless, the stroke length can be overtravelled.

Open Magnet No. 251416

Ringmagnet No. 400533

The sensor may be operated in any position. Normally, the sensor is firmly installed, whilst the magnet head is mounted at the mobile machine part and taken over the tube contactlessly.

Attention!

To avoid damaging of slider, magnet and sensor be aware of a careful parallel mounting of the transducer.

Mounting foot with machine screws M5 $\times 20$ (Tightening torque $<1,1 \mathrm{Nm}$)

T-slot Nut M5 in base channel

Non-magnetic Material
Magnetic Material

Open Ringmagnet, removable

(1) Magnet
(2) Non-magnetic mounting
plate and screws

Example: Sensor Supports

Cylinder Installation

The basic sensor unit comprising electronic head and sensing element is mounted in the high pressure sensor housing (flange with rod) with only 2 screws and fits into the piston rod. The magnet on the bottom of the piston floats contactlessly over the sensor rod and marks the measuring point through the rod wall. Due to this construction, the sensor tube is part of the cylinder and the hydraulic system has not to be opened in case of service.

When installing the sensor in the cylinder notice following:

1. Magnet must not slide along the sensor tube.
2. The bore in the piston rod and type of sealing are determined by cylinder manufacturers as these depend on hydraulic pressure and piston velocity. We recommend 13 mm bore hole diameter at minimum and O-rings or copper gaskets for sealing.
3. Do not exceed peak pressure of 530 bar.
4. Protect the sensor rod from wear.

ATTENTION

After changement of sensor cartridge, the screws must be fastened with e.g. Loctite 243.

2 Sensor Cartridge

(Electronic head + Sensing element): Easy to replace in the field with 2 screws Torx 20

Profile and Rod-Models

WARNING!

Temposonics sensors are active electronic systems. When installing the transducer it is essential that correct sensor connections are ensured.

Before turn-on, please, check if the sensor was connected correctly, in order to prevent destruction of the sensor electronics by voltage peaks or faulty connection.

Dependent on version, the sen- sor must be connected via the 6 pin connector or via the in-tegrated cable. Connection is dependent on application:

- Position measurement (1 magnet sensor)
- Position measurements $1+2$
(2 magnets sensor)
- Velocity measurement (1 magnet sensor)

CAUTION!

During wiring, disconnection from all voltage sources must be ensured.

To prevent interference affecting the electronic measuring equipment, the connecting cables must be installed with utmost care. Therefore,

- Keep cables away from mo- tor cables,

Attention!

Note supplement to CE labeling!

Be care for a flawless sensor machine grounding. The cable shield must be connected to the cable connector and has to be connected to machine ground on the controller electronic side. Typical ground connections are shown in the examples right.

Connector Output

6 pin male connector, metal

Integral cable

2 m PVC cable $6 \times 0,14 \mathrm{~mm}^{2}$,
EMC shield, bending radius: 50 mm at fixed installation

Typical grounding profile style

Typical grounding rod style

All Temposonics sensors are factory calibrated and should not require calibration. However, if your application requires that the Zero and Span settings or velocity output be modified, use the appropriate procedure below.
Sensor programming means the location of setpoints SP1 and SP2 (Fig. 3) and adjustment of the outputs (V or mA) at these points. Use the two pushbuttons (right) in the sensor head for new setpoints and the choice of operation modes.

For programming, remove the two protective screws above pushbuttons PB1 and PB2 and press the switches by means of the programming tool delivered with the sensor.

Measuring Range

ATTENTION!

Independent on measuring direction, location of setpoints is always:

- SP1 at Sensor head
- SP2 at Rod end

When programming sensors, make sure that setpoints are within the active stroke length of the sensor.

NOTE

Sensors will be adjusted at factory according to the order specifications and delivered with

- one current output or
- one voltage output or
- two current outputs or
- two voltage outputs

Fig. 1
Top view sensor head with pushbutton locations

Fig. 2
Axial section sensor head

Attention

Do not use peaked or sharp-edged tools for actuating pushbuttons. They can destroy the switches.

Operation Modes

The sensor will support three available operation modes. Determined output values of a connected multimeter confirm setting of the desired mode (below).

Operation Mode 1: Position Output (Single magnet) Display: appx. 5,5 V or 11,0 mA

Operation Mode 2: Position Output 1+2 (Dual magnet)...... Display: appx. 3,0 V or 6,8 mA
Attention: Operation mode 2-magnets needs two magnets. One magnet only does not work.
Operation Mode 3: Position + Velocity Output (Single magnet) ... Display: appx. 8,0 V or $15,5 \mathrm{~mA}$

OPERATION MODE 1: Displacement Measurement (Single Magnet)
Measuring direction: FORWARD ACTING
Output: 0-10 V / 4-20 mA / 0-20 mA

	Action	Display Output - Connector Pin: 1 and 2 - Cable Color: gray and pink	Note
	1) Remove screws to access pushbuttons PB1 and PB2		
	2) Connect a multimeter (V/A) across Output 1 (see page 6)		
	3) Turn the power ON		Attention! Switch on sensor approx. 5 minutes before programming.
Operation Mode Selection Display: $\mathbf{5 . 5} \mathrm{V} / 11.0 \mathrm{~mA}$	4) Move the magnet to desired set point SP2 (towards rod end)		Important! Do not move the magnet anymore.
	5)Press and release PB1	jumps to appx. 5.5 V ($\mathbf{1 1 . 0} \mathbf{~ m A)}$	Shows displacement measurement »forward acting« mode is selected.
	6)Press and release PB2	jumps to appx. 10.5 V ($\mathbf{2 0 . 0} \mathbf{~ m A)}$	
	7) Press and release PB2	remains at appx. $10.5 \mathrm{~V}(\mathbf{2 0 . 0} \mathbf{~ m A})$	Confirms selected operating mode.
Setpoint SP2 Adjustment	8) Press PB1 (increase) or PB2 (decrease) for setting	$10.000 \mathrm{~V}(20.000 \mathrm{~mA})$ or the desired Output Value	Velocity of setting values increase after approx. 10 seconds.
	9) Move the magnet to desired set point SP1 (towards sensor head) Alternative: Press PB1 + PB2 together	$\begin{aligned} & \text { jumps to appx. } 1.000 \mathrm{~V} \\ & (2.000 \mathrm{~mA}) \end{aligned}$	Attention! Needs a minimum magnet speed of approx. $3.5 \mathrm{~mm} / \mathrm{sec}$.
Setpoint SP1 Adjustment	10)Press PB1 (increase) or PB2 (decrease) for setting	$0.050 \mathrm{~V}, 4.000 \mathrm{~mA}, 0.050 \mathrm{~mA}$ or the desired Output Value	Velocity of displayed values increase after approx. 10 seconds.
	11)Move the magnet towards SP2 (rod end) Alternative: Press PB1 + PB2 together	10.000 V (20.000 mA$)$ or adjusted Output Value	Attention! Needs a minimum magnet speed of appx. $3.5 \mathrm{~mm} / \mathrm{sec}$. Moving the magnet automatically exits programming and puts the sensor in operating mode.
Checkup	12)Move the magnet towards SP1 (sensor head)	$0.050 \mathrm{~V}, 4.000 \mathrm{~mA}, 0.050 \mathrm{~mA}$ or adjusted Output Value	
	13) Place the magnet at the middle of the measuring range	$\begin{aligned} & 5.025 \mathrm{~V}, 12.000 \mathrm{~mA} \\ & \text { or } 10.025 \mathrm{~mA} \end{aligned}$	Valid only for standard adjustment.
	14) Move the magnet inside the active stroke		Output values must be displayed continuously.
	Programming of »forward acting« is complete		
	15) Screw in the protective screws w	Loctite 243	

Note!
Temposonics sensors are supplied with either Vdc or mA output from the factory and cannot be reprogrammed in the field. When programming Temposonics sensors, make sure that the setpoints are within the active stroke length of sensor.

OPERATION MODE 1: Displacement Measurement (Single Magnet)
Measuring direction: REVERSE ACTING
Output: 0-10 V/4-20 mA / 0-20 mA

	Action	Display Output - Connector Pin: 1 and 2 - Cable Color: gray and pink	Note
	1) Remove screws to access pushbuttons PB1 and PB2		
	2) Connect a multimeter (V/A) across Output 1 (see page 6)		
	3) Turn the power ON		Attention! Switch on sensor approx. 5 minutes before programming.
Operation Mode Selection Display: 5.5 V / 11.0 mA	4) Move the magnet to desired set point SP2 (towards rod end)		Important! Do not move the magnet anymore.
	5) Press and release PB1	jumps to appx. 5.5 V (11.0 mA$)$	Shows displacement measurement »revers acting« mode is selected.
	6) Press and release PB2	jumps to appx. 10.5 V ($\mathbf{2 0 . 0} \mathbf{~ m A)}$	
	7) Press and release PB1	jumps to appx. $0.5 \mathrm{~V}(1.5 \mathrm{~mA})$	
	8) Press and release PB2	remains at appx. $0.5 \mathrm{~V}(1.5 \mathrm{~mA})$	Confirms selected operating mode
Setpoint SP2 Adjustment	9) Press PB1 (decrease) or PB2 (increase) for setting	$0.050 \mathrm{~V}, 4.000 \mathrm{~mA}, 0.050 \mathrm{~mA}$ or the desired Output Value	Velocity of setting values increase after approx. 10 seconds
	10)Move the magnet to desired set point SP1 (towards sensor head) Alternative: Press PB1 + PB2 together	jumps to appx. 10.0 V ($\mathbf{2 0 . 0} \mathbf{~ m A)}$	Attention! Needs a minimum magnet speed of approx. $3.5 \mathrm{~mm} / \mathrm{sec}$.
Setpoint SP1 Adjustment	11)Press PB1 (decrease) or PB2 (increase) for setting	$10.000 \text { V (} 4.000 \mathrm{~mA})$ or the desired Output Value	Velocity of displayed values increase after approx. 10 seconds.
	12)Move the magnet towards SP2 (rod end) Alternative: Press PB1 + PB2 together	$0.050 \mathrm{~V}, 4.000 \mathrm{~mA}, 0.050 \mathrm{~mA}$ or adjusted Output Value	Attention! Needs a minimum magnet speed of appx. $3.5 \mathrm{~mm} / \mathrm{sec}$. Moving the magnet automatically exits programming and puts the sensor in operating mode.
Checkup	13)Move the magnet towards SP1 (sensor head)	$10.000 \text { V (} 20.000 \mathrm{~mA})$ or adjusted Output Value	
	14) Place the magnet at the middle of the measuring range	$\begin{aligned} & 5.025 \mathrm{~V}, 12.000 \mathrm{~mA} \\ & \text { or } 10.025 \mathrm{~mA} \end{aligned}$	Valid only for standard adjustment.
	15) Move the magnet inside the active stroke		Output values must be displayed continuously.
	Programming of »reverse acting« is complete		
	16)Screw in the protective screws with	octite 243	

Note!
Temposonics sensors are supplied with either Vdc or mA output from the factory and cannot be reprogrammed in the field. When programming Temposonics sensors, make sure that the setpoints are within the active stroke length of sensor.

Recommendation!

At present reprogramming of Operation Modes 2 and 3 should be done at MTS factory.

