Data Sheet

Level Plus ${ }^{\circledR}$ - LevelLimit

Magnetostrictive Liquid Level Transmitters with Temposonics ${ }^{\circledR}$ Technology

-5-IN-1 Measurement

- Integral HI level Digital I/O
- Level Inherent Accuracy ± 1 mm
- API Temperature Corrected Volumes
- No Scheduled Maintenance or Recalibration
- Hazardous Area Certified

Level Plus ${ }^{\circledR}$ LevelLimit
Data Sheet

MEASURING TECHNOLOGY

The absolute, linear position sensors provided by Temposonics rely on the company's proprietary Temposonics ${ }^{\circledR}$ magnetostrictive technology, which can determine position with a high level of precision and robustness. Each Temposonics ${ }^{\circledR}$ position sensor consists of a ferromagnetic waveguide, a position magnet, a strain pulse converter and supporting electronics. The magnet, connected to the object in motion in the application, generates a magnetic field at its location on the waveguide. A short current pulse is applied to the waveguide. This creates a momentary radial magnetic field and torsional strain on the waveguide. The momentary interaction of the magnetic fields releases a torsional strain pulse that propagates the length of the waveguide. When the ultrasonic wave reaches the end of the waveguide it is converted into an electrical signal. Since the speed of the ultrasonic wave in the waveguide is precisely known, the time required to receive the return signal can be converted into a linear position measurement with both high accuracy and repeatability.

LevelLimit

The Level Plus ${ }^{\circledR}$ LevelLimit liquid level transmitter satisfies the demand for an accurate and robust liquid level transmitter with integral HI level overfill protection. The level transmitter offers the ability to measure the product level, interface level, temperature, and volume. The electrically isolated HI level detection uses a separate set of electronics and reed switch technology to offer a Digital I/O output based off of the movement of an independent HI level float. The HI level float offers mechanical testing for verification.

Standard	Rating		
FM 3610 ISA 60079-11:2014	Class I, Div. 1, Groups A, B, C, D T4 Class I, Zone 0, AEx ia IIC T4 Ga $\mathrm{Ta}=-50$ to $71^{\circ} \mathrm{C}$: IP65		
$\begin{aligned} & \text { C22.2 No. } 157 \\ & \text { C22.2 No. 60079-11:2014 } \end{aligned}$	Class I, Div. 1, Groups A, B, C, D T4 Class I, Zone 0, Ex ia IIC T4 Ga $\mathrm{Ta}=-50$ to $71^{\circ} \mathrm{C}$: IP65		
EN 60079-11:2012	FM14ATEX0068X Ex \\|II G Ex ia IIC T4 Ga Ta $=-50$ to $71^{\circ} \mathrm{C}$: IP65		
IEC 60079-11:2011	IECEx FMG 14.0032X Ex ia IIC T4 Ga $\mathrm{Ta}=-50$ to $71^{\circ} \mathrm{C}: \mathrm{IP} 65$		
UKSI 2016:1107	FM22UKEX0069X $\left\langle\sum_{x} \\| 1 / \mathrm{G}\right.$ Ex ia IIC T4 Ga/Gb $\mathrm{Ta}=-50$ to $71^{\circ} \mathrm{C}$		
FM 3615 ISA 60079-1	Class I, Div. 1, Groups A, B, C, D T6...T3 Class I, Zone 0/1, AEx db IIB+H2 T6...T3 Ga/Gb $\mathrm{Ta}=-40$ to $71^{\circ} \mathrm{C}$: IP65		
$\begin{aligned} & \text { C22.2 No. 30 } \\ & \text { C22.2 No. 60079-1 } \end{aligned}$	Class I, Div. 1, Groups B, C, D T6...T3 Ex db IIB+H2 T6...T3 Ga/Gb $\mathrm{Ta}=-40$ to $71^{\circ} \mathrm{C}$: IP65		
EN 60079-1:2014	FM16ATEX0068X Ex $\\| \frac{1}{2}$ G Ex db \\|B + H2 T6...T3 Ga/Gb $\mathrm{Ta}=-40$ to $71^{\circ} \mathrm{C}$: IP65		
IEC 60079-1:2011	IECEx FMG 16.0033X Ex db IIB+H2 T6...T3 Ga/Gb $\mathrm{Ta}=-40$ to $71^{\circ} \mathrm{C}$: IP65		
UKSI 2016:1107	FM22UKEX0070X 〔x $\sum_{\\|} 1 / 2 / 2 G E x d b \\| B+H 2 T 6 \ldots T 3$ Ga/Gb $\mathrm{Ta}=-40$ to $71^{\circ} \mathrm{C}$		

Fig. 2: Certifications of LevelLimit level transmitter

Fig. 1: Time-of-flight based magnetostrictive position sensing principle

Features:

- 5-in-1 Measurement
- Product Level
- Interface Level
- Temperature
- Volume
- HI level Digital I/O
- No scheduled maintenance or recalibration
- Level Inherent Accuracy ± 1 mm
- Integral Display
- Intrinsically Safe
- Explosion Proof

Fig. 3: Example of product and interface level measurement

TECHNICAL DATA

Level output	
Measured variable	Product level and interface level
Output signal/protocol	Modbus RTU Analog (4-20mA), HART ${ }^{\circledR}$
Order length	Flexible hose: $1575 \ldots . .22000 \mathrm{~mm}$ ($62 . . .866 \mathrm{in}$.) Rigid pipe: $305 . . .7620 \mathrm{~mm}$ (12... 300 in .)
Inherent accuracy	$\pm 1 \mathrm{~mm}$ (0.039 in.)
Repeatability	0.001% F.S. or 0.381 mm (0.015 in.) whichever is greater (any direction)
Temperature output	
Measured variable	Average and multipoint temperature (Modbus) Single point temperature (Analog, HART ${ }^{\bullet}$)
Temperature accuracy (Modbus)	$\begin{aligned} & \pm 0.2^{\circ} \mathrm{C}\left(0.4^{\circ} \mathrm{F}\right) \text { range }-40 \ldots-20^{\circ} \mathrm{C}\left(-40 \ldots-4^{\circ} \mathrm{F}\right), \\ & \pm 0.1^{\circ} \mathrm{C}\left(0.2^{\circ} \mathrm{F}\right) \text { range }-20 \ldots+70^{\circ} \mathrm{C}\left(-4 \ldots+158^{\circ} \mathrm{F}\right), \\ & \pm 0.15^{\circ} \mathrm{C}\left(0.3^{\circ} \mathrm{F}\right) \text { range }+70 \ldots+100^{\circ} \mathrm{C}\left(+158 \ldots+212^{\circ} \mathrm{F},\right. \\ & \pm 0.5^{\circ} \mathrm{C}\left(0.9^{\circ} \mathrm{F}\right) \text { range }+100 \ldots+105^{\circ} \mathrm{C}\left(+212 \ldots 221^{\circ} \mathrm{F}\right) \end{aligned}$
Temperature accuracy (Analog, HART ${ }^{\text {® }}$)	$\pm 0.28^{\circ} \mathrm{C}\left(0.5{ }^{\circ} \mathrm{F}\right)$ range $-40 \ldots+105^{\circ} \mathrm{C}\left(-40 \ldots+221^{\circ} \mathrm{F}\right)$
Digital I/0	
Input voltage	Up to 30 VDC
Resistance	500Ω
Current switch capability	50 mA @ 28 VDC
Compatibility	ABB RMC 100, Emerson ROC 827, Xetawave I/0, and others
Cable	Cat5 or equivalent type cable is required ($15 \mathrm{pF} / \mathrm{ft}$. or $49 \mathrm{pF} / \mathrm{m}$) for a max run of 1200 m (4000 ft .)
Electronics	
Input voltage	10.5... 28 VDC
Fail safe	High, full scale (Modbus) Low (3.5 mA , default) or high (22.8 mA) (Analog, HART ${ }^{\circledR}$)
Reverse polarity protection	Series diode
EMC	EN 61326-1, EN 61326-2-3, EN 61326-3-2, EN 61000-6-2, EN 61000-6-3, EN 61000-4-2, EN 61000-4-3, EN 61000-4-4, EN 61000-4-5, EN 61000-4-6, EN 61000-4-8, EN 61000-4-11
Environmental	
Enclosure rating	NEMA Type 4X, IP65
Humidity	$0 . .100 \%$ relative humidity, non-condensing
Operating temperatures	Electronics: $-40 \ldots+71^{\circ} \mathrm{C}\left(-40 \ldots+160^{\circ} \mathrm{F}\right)$ Sensing element: $-40 \ldots+125^{\circ} \mathrm{C}\left(-40 \ldots+257^{\circ} \mathrm{F}\right)$ (contact factory for specific temperature ranges) Temperature element: $-40 \ldots+105^{\circ} \mathrm{C}\left(-40 \ldots+221^{\circ} \mathrm{F}\right)$
Vessel pressure	Flexible hose: 30 bar (435 psi) Rigid pipe: 69 bar (1000 psi)
Materials	Wetted parts: 316L stainless steel (contact factory for alternative materials) Non-wetted parts: 316L stainless steel, Epoxy coated aluminum
Field installation	
Housing dimensions	Dual cavity: 117 mm (4.6 in.) W \times by 127 mm (5 in .) $\mathrm{D} \times 206 \mathrm{~mm}$ (8.1 in.) H
Mounting	
Flexible hose or rigid pipe	4 in. adjustable MNPT, ANSI and DIN flanges
Wiring	
Connections	Terminal block
Electrical connections	
Dual cavity	$3 / 4 \mathrm{in}$. FNPT conduit opening, M20 for ATEX/IECEx/UKCA version
Display	
Measured variables	Product level, interface level and temperature

Level Plus ${ }^{\circledR}$ LevelLimit

Data Sheet

TECHNICAL DRAWING (FLEXIBLE HOSE)

TRANSMITTER INACTIVE ZONE REFERENCE

Order Length	Inactive Zone
$<7.6 \mathrm{~m} \mathrm{(25} \mathrm{ft)}$.	$76 \mathrm{~mm}(3 \mathrm{in})$.
7.6 m to $12.2 \mathrm{~m} \mathrm{(25} \mathrm{to} 40 \mathrm{ft})$.	$97 \mathrm{~mm}(3.8 \mathrm{in})$.
12.3 m to $22 \mathrm{~m} \mathrm{(40} \mathrm{to} 72 \mathrm{ft})$.	$120 \mathrm{~mm}(4.7 \mathrm{in})$.

TECHNICAL DRAWING (RIGID PIPE)

TRANSMITTER INACTIVE ZONE REFERENCE

Order Length	Inactive Zone
$<7.6 \mathrm{~m}(25 \mathrm{ft})$.	$76 \mathrm{~mm}(3 \mathrm{in})$.

Level Plus ${ }^{\circledR}$ LevelLimit
Data Sheet

ORDER CODE

a Sensor model

L	P	L	LevelLimit Level Transmitter

b	Output
$\mathbf{1}$	1 Loop with HART ${ }^{\circledR}$
2	2 Loop with HART ${ }^{\circledR}$
5	1 Loop with HART ${ }^{\circledR}$ and SIL 2
7	2 Loop with HART ${ }^{\circledR}$ and SIL 2 (Loop 1 only)
M	Modbus

c	Sensor pipe
B	$5 / 8$ in. OD rigid pipe
M	Flexible, $7 / 8$ in. OD tube w/bottom fixing eye
N	Flexible, $7 / 8$ in. OD tube w/bottom fixing weight
P	Flexible, $7 / 8$ in. OD tube w/bottom fixing magnet
S	Flexible, $7 / 8$ in. OD tube w/o bottom fixing hardware

d	Process connection type
$\mathbf{1}$	NPT adjustable (4 in. size only)
$\mathbf{6}$	150 lb . drilled and tapped flange
$\mathbf{7}$	300 lb. drilled and tapped flange
$\mathbf{8}$	600 lb . drilled and tapped flange
A	PN16, DIN 2572 drilled and tapped flange
B	PN40, DIN 2572 drilled and tapped flange
C	PN64, DIN 2572 drilled and tapped flange
D	PN100, DIN 2572 drilled and tapped flange

e	Process connection size
\mathbf{D}	2 in. (DN50)
E	2.5 in. (DN65)
F	3 in. (DN80)
G	4 in. (DN100)
H	5 in. (DN125)
J	6 in. (DN150)

\mathbf{f}	Number of DT's (Digital Thermometers)
$\mathbf{0}$	None
$\mathbf{1}$	One DT
$\mathbf{5}$	Five DT‘s
K	Twelve DT‘s
\mathbf{M}	Sixteen DT's

DT's placement

F	Evenly spaced per API
C	l ustom
\mathbf{X}	None

h	Notified body
B	INMETRO
C	CEC (FMC)
E	ATEX
F	NEC (FM)
N	NEPSI
\boldsymbol{K}	KC
I	IEC
T	CMLTIIS
	UKCA
\boldsymbol{X}	None

i Protection method

F Explosionproof/Flame proof
I Intrinsically safe
No approval

j	Gas group
A	Group A (not available with "C = CEC (FMC)" notified body and
	"F = Flameproof/Explosion" proof protection method)
B	Group B
C	Group C
D	Group D
3	IIC (Instrinsically Safe only)
4	IIB + H2 (Explosion Proof/Flameproof only)
X	None

\section*{k Unit of measure
 M M Millimeters (Metric)
 Inches (US customary)
 I | m | n | Continued on next page |
| :--- | :--- | :--- | :--- |}

ORDER CODE

m	Special	
S	Standard product	
n	HI Level switch position	
X	X X X	Flexible sensor pipe: 1575... 22000 mm (code as 01575 to 22000)
X	X X X	Flexible sensor pipe: 55... 866 in. (code as 05500 to 86600)
X	X X X X	Rigid sensor pipe: 275...7620 mm (code as 00275 to 76200)
X	X X X X X	Rigid sensor pipe: 10... 300 in. (code as 01000 to 30000)

NOTICE

Accessories such as floats, cables, and remote displays have to be ordered separately. All accessories are shown in the Accessories
Catalog (551103).

Level Plus ${ }^{\circledR}$ LevelLimit

Data Sheet

FREQUENTLY ORDERED ACCESSORIES - Additional options available in our Accessories Guid [551103

General Notes

1. Be sure that the float specific gravity is at least 0.05 less than that of the measured liquid as a safety margin at ambient temperature.
2. For interface measurement: A minimum of 0.05 specific gravity differential is required between the upper and lower liquids.
3. When the magnet is not shown, the magnet is positioned at the center line of float.
4. Drawings contained in this document are for reference only. Contact the factory for engineering drawings.

UNITED STATES	3001 Sheldon Drive	Document Part Number:
Temposonics, LLC	Cary, N.C. 27513	551993 Revision E (EN) 01/2023
Americas \& APAC Region	Phone: +1919677-0100	
	E-mail: info.us@temposonics.com	
GERMANY	Auf dem Schüffel 9	
Temposonics	58513 Lüdenscheid	
GmbH \& Co. KG	Phone: +492351 9587-0	
EMEA Region \& India	E-mail: info.de@temposonics.com	
ITALY	Phone: +39 0309883819	
Branch Office	E-mail: info.it@temposonics.com	
FRANCE	Phone: +33614060728	
Branch Office	E-mail: info.fr@temposonics.com	
UK	Phone: +447921830586	
Branch Office	E-mail: info.uk@temposonics.com	
SCANDINAVIA	Phone: +4670 2991281	
Branch Office	E-mail: info.sca@temposonics.com	
CHINA	Phone: + 862134057850	
Branch Office	E-mail: info.cn@temposonics.com	
JAPAN Branch Office	Phone: +8136416 1063 E-mail: info.jp@temposonics.com	

temposonics.com

